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Random Vibration of some Non-Linear Systems

By Jens Trampe Broch, Dipl. Ing. E.T.H.

ABSTRACT

After a brief discussion of the basic differential equation governing non-linear, single degree-of-
freedom systems a selection of some important response characteristics for further study is made.
Such characteristics are the relative displacement and the acceleration of the mass, and the
statistical behaviour of these quantities is determined when the systems are excited by wide
band random noise. As general theoretical solutions are known only for the statistics of the

relative displacement and velocity in systems with non-linear stiffness the results obtained in
this paper are based mainly on studies employing electrical-mechanical analogue models. The
B & K Noise Generator Type 1402 was used as signal source because, up to some 4 5 values,
it has a symmetrical, truly Gaussian instantaneous value distribution. A number of important
conclusions can be drawn from the experimental results.

SOMMAIRE

Aprés une bréve description des equations différentielles fondamentales du comportement des
systéemes non linédaires 3 un seul degré de liberté, [‘article montre les caractéristiques de
réponse en fréquence les plus importantes pour ['étude de ces systémes. Ce sont par exemple les
caractéristiques de déplacement relatif et de I‘accélération de la masse, et |'on peut determiner
statistiguement la réaction de ces grandeurs lorsqu’un systéme est soumis a une excitation
stochastique a large bande. La détermination générale n’etant praticable analytiquement que pour
le déplacement relatif et la vitesse de systémes a élasticité non linéaire, les résultats présentés
par l‘article sont principalement basés sur ['étude expérimentale de dispositifs analogues électro-
mécaniques. Comme source d’excitation on utilise le Générateur de Bruit B&K 1402 qui fournit
un signal de répartition gaussienne symétrique jusqu’a 4 5. Des conclusions importantes sont tirees
des résultats expérimentaux.

ZUSAMMENFASSUNG

Von der Differentialgleichung nichilinearer Systeme eines Freiheitsgrades ausgehend, werden
einige wichtige GroBen zum Zweck des naheren Studiums ausgewidhlt. Hierzu zdhlen der
relative Avusschlag und die Beschleunigung der Masse, deren statistisches Verhalten bei Ein-
wirkung breitbandigen Rauschens untersucht wird.

Da allgemeine theoretische Ldsungen nur von der Statistik des relativen Ausschlags und der
Geschwindigkeit in Systemen mit nichtlinearer Steifigkeit bekannt sind, wurden die in diesem
Aufsatz angeflUhrten Ergebnisse experimentell an elektromechanischen Ersatzmodellen ermittelt.
Hierbei hat sich der B & K-Rauschgenerator Typ 1402 als Signalquelle mit echter symmetrischer
Gaufdverteilung bis 4 5 bewadhrt. Die experimentellen Ergebnisse erwiesen sich als sehr auf-
schlufB3reich.

Introduction

In the B & K Technical Review no. 4-1963 the response of some non-linear,
frequency dependent systems to sinusoidal imputs were described. This paper
will concern itself with similar systems excited by wide-band Gaussian
random noise. The studies will be limited to single degree-of-freedom systems

A



and the main »weight” will be on the so-called hardening spring*} system.
Response distributions, waveshapes and spectra produced by the non-
linearities will be determined and discussed.

The problems of random excitation of non-linear systems have been {reated
in literature to some extent during the later years and there are several
analytical methods of attack (Booton, Caughey, Crandall, LLyon, Chuang and
Kazda a.o.) The method actually employed will normally depend upon the
desired “end result”. However, when details of the response statistics are
required the method of the FFokker-Planck equation (see Appendix A) seems
to be the most promising one. On the other hand, the treatment of relatively
complicated problems such as non-linear random vibrations very often re-
quires an intermingling of theory and practical experiments to achieve results
which can be readily used in practice. It is therefore the intention in this
paper to approach the problem in an experimental way and show some actual
test resulis obtained {from measurements on electro-mechanical analogue
systems., Also existing theories will be briefly reviewed as applicable to the
problems.

Basiec Considerations.

The starting point for nearly all existing theoretical investigations on single
degree of freedom non-linear systems has been to obtain a solution to the
differential equation:

d= x ( dx
m - R - 4+ F (x) = f (1 1
Here
m = mass of the vibrating system

velocity-dependent damping f{erm

[ dx ) .
T
F(x) = displacement-dependent stiffness term
f(t) = forcing function (wide-band Gaussian random noise)
Other versions of this equation where p ( (3;: > is constant (Coulomb
friction) or dependent on both x (displacement) and i: could be formulated

for many practical vibration problems but the only case where general
statistical solutions have been obtainable up to now has been where the
damping term is linearly proportional to the velocity and only the stiffness
term 1S non-linear, 1.e.:

d?x dx
il g F — f (1 21
m o + 4 i + F (x) (t) (2

R

#) A hardening spring is a spring which becomes “stiffer’” by deflection.



Forcing function

f(t)
¢— Y=X—X,

2
Mass im d X | m_g_??L
dt?

I | 1 'f"?sﬂ\ - h
F(x)T ' L.Jt/ﬁ(—g-t’i) F(y)r | Tﬁ(}f,jTy)

Spring Damping Spring Damping ¢
. X o

Base Base | f(t)-
264537
Forcing function
a) b)
IFig. 1. Types of vibration excitation of a single degree-of-freedom mechanical
system:

a) The exciting force operates directly on the mass. |
b) The exciting force operates on the mass through the supports
(i.e. the force is applied to the base).

This equation describes the displacement of the mass in a vibrating system
such as the one sketched in Fig. 1a). Actually, the same type of differential
equation can be used to describe the system shown in I‘ig. 1b). However,
in this case v = x — X, has to be substituted for x, where x, 1s the displace-
ment of the base. Also f(t) now describes the acceleration of the base, and
v is the displacement of the mass relative to the displacement of the base.
In other words y is the instantanous compression or extension of the spring
element. The system shown in Fig. 1a) is equivalent to an “idealized” machine
supported by flexible mounts on a rigid structure while that shown in IFig. 1b)
is equivalent to, f.inst., a single degree-of-freedom system mounted on a
vibrating panel (or on the table of a vibration generator).

Fig. 2 shows a practical electrical analogue model (mobility analogy) of the
system in Fig. 1b. To obtain the correct input conditions to the circuit (“white”
acceleration spectrum) the output voltage from the noise generator must be
“weighted” (in the mobility analogy voltage corresponds to velocity) which can
be catered for by introducing a simple R-C-network as shown in the figure®).
The voltage from the R-C-network is amplified in an amplhifier with a high
input and very low output impedance (actually the output amplifier of a second
Noise Generator Type 1402 was used), and then applied to the non-linear
circuit.

There are a great number of response characteristics which are ol interest
in the study of non-linear systems with random inputs, such as amplitude
distributions, wave-shapes, frequency spectra and average resonance 1Ire-
quencies, “mean clump sizes”*%*) clc.

#) See also B & K Technical Review no. 4-1963, p. 18.

##) The expression “mecan clump size’’ was originally introduced by R. H. Lyon and
describes the average number of cycles which c¢xceed a predeiermined level 1n one
“clump’, i.e, where one cycle immediately succeeds the previous onec.



Also most of these quantities vary with the type of excitation (constant input
acceleration, velocity or displacement) and depend upon whether it is the
response acceleration, velocity or displacement that 1s being studied. It 1s
readily seen that even in the study of one particular non-linear system the
amount of data necessary to almost completely describe the various responses
both statistically and physically, is enormous. The only practical way out
of this “jungle of data’” seems therefore to be to try and select some essential
characteristics for a closer study and then attempt to relate the other data
in a more general manner to the already obtained results.

Measurement of
re(ative motion

A4 d A
: ] l Frequency |
—= @ | | Weighting | ! N
= @& | r - = | |
I.I t l 6 U 6 ﬁ ——g P : S ﬂol
o | | - Spring
@ | | e B S . Measurement
nhi;:r : ..-_,._C ! Dﬂmping Gf GbSUIUte
‘ o ‘ _ Mass —— « motion
Noise ' 4 | '
Generator | - ! i & & i 1--02
Network ! Amplifier . . . e
producing Non-Llinear 264534
| “constant . system
acceleration
drive”

Fig. 2. Mobility analogy of a system with non-l{inear restoring force (spring),
and the electrical circuit used to produce an input voltage corresponding to
constant acceleration level of the base (Fig. 1b).

One way of deciding essential vibration characteristics 1s to look at the
system shown in Fig. 1b) and see what 1t is that may cause the system to
malfunction. It 1s readily seen that the most probable type of malfunctioning
of the spring element will be due fo mechanical fatigue (or some excessive
stress peaks). As the stresses in the spring are related to the relative dis-
placement of the mass this is an “essential characteristic’ of the response.
Also, if the mass element contains f. inst. electronic parts such as tubes {which
actually in themselves are fairly complicated mechanical systems} the force
transmitted to the mass (or the acceleration of the mass) will be another
“essential” response characleristic. Only the statistics of the relative displace-
ment and relative velocity of the mass for the case of non-linear spring
elements are available as known solutions to the associated IFokker-Planck
equation, and this 1s lherefore the only exact “starting point” for further
investigations. Khabbaz has, however, also studied the relative displacement
and velocity of the mass for the case where the damping element is non-
linear (and the spring is linear). His solution refers to a particular type of



relatively small non-linear damping and the method used i1s fairly cumber-
some. It is therefore not too well suited for general engineering practice, but
his results are indicative and will be discussed later in this article.

| =
| Rel.Displacement
| SheSE5
I

Fig. 3. Force vs. relative displacement characteristics for some typical sym-
- metrical spring arrangements: '
a) Hardening type spring.
b) Linear spring.
¢) Softening type spring.

Systems with Non-linear Spring Elements.

I'1ig. 3 shows some limiting characteristics for the force vs. relative displace-
ment of various types of spring arrangements by means of which many
practical cases can be approximated. Mathematically, the “hardening spring”
case may be treated by using a “tangent elasticity” curve of the type shown
in Fig. 4.

Similarly the “softening spring”’ case may be investigated using a “hyperbolic
tangent characteristic”, Fig. 5.

The case of the “tangent elasticity characteristic” has been treated analytically
by G. H. Klein and the mathematical material presented here for this case is
based on his results. The treatment of the “hyperbolic tangent characteristic”
1s believed to be new.

The Hardening Spring System.

Starting with the hardening spring system with tangent elasticity characteristic
it is shown, 1In Appendix A, that the probability density curve for the in-
stantaneous values of the relative displacement is



Hardening_Spring_System

i Fly}
Fly)=a-tonE5y) 5q-

. pe— — f—

Lg-

0.362 | 0.435 | 0.49

et 230

Fig. 4. Tangent elasticity characteristic used to describe hardening spring

systems.
Va I (g +r 4
7T
piy) =t 2L s Ty 3
2df(y2)

Here y is a quantity determined by the actual slope of the spring characteristic
around zero, and the excitation level.*}

Softening_Spring_System

Fly)=b-tanh(y)

157 | 282

Fig. 5. Hyperbolic tangent characteristic used to describe softening spring
systems.
#) Note: y is inversely proportional to the excilation level, see Figs. 4 and 3.




Theoretical probability density curves plotted for various values of y are

shown in Fig. 6 and the corresponding r.m.s.-values of the response, ———,

Or
are

d

siven in the table, Fig. 4. Note the limiting effects of the hardening spring
characteristic as the excitation is increased — actually the distribution tends

towards a box-type distribution with increasing level of excitation.

I'ig. 6. Theoretical probability density curves for the

Relative Displacement

Hardening_Spring_System

p{

ﬂ=ﬁ' Nh+i) [cns'[?'ﬂj

2P (a3

!l...-'..'
-,h-

— Loy

o r ‘h' r
J o Loy
FoeS38

instantaneous

relative displacements of the hardening spring system, see also Iig. 4.

From
Non-linear

Circuit

dy

integrating
Amplifier and Monitor

Amplifier

Random Noise
Voltmeter

Modif jed
Variable ElECt[‘DF’IIC
reversible Counter
D.C.Supply/

Fig. 7. Measuring arrangement used to determine the probability density curves
of the relative displacement analogue voltage.



Using the analogue model shown in IFig. 2, where the hardening spring 1is
simulated by an iron core coil (see also B & K Technical Review no. 4-1963),
this trend in distribution can be verified experimentally. A measuring arrange-
ment by means of which it is possible to record probability density curves
automatically on a Level Recorder Type 2305 has been described 1n the
B & K Technical Reviews no. 4-1959 and no. 2-1961. Unfortunately, this method
is not too well suitted to compare the results obtained with the actually used
non-linear characteristics with the theoretically treated “tangent elasticity”
data, therefore for comparison purposes an arrangement as shown in Fig. 7
was used. Here the signal from the non-linear circuit was fed to an electronic
counter which was switched to measure the relative time the signal was

Probability: Py, y+Ay)= Ef‘t
Amptitud - . .
‘y pLTUCE Probability Density: p{y}=1im Ply1y+ay)
Ay LY
Measuring
"window”
| || i | adl i\ time
| | f | L | | ! | | |
| a i : : 2 !|
o L-JH Ly o o e e el bl
ﬂ.l‘-t ﬂtg'.]' ﬁf‘.; tﬁt5 ﬁtﬁ tB .:f:.i‘g iﬂﬂm
Ll lee |
Atg i
|
| |
. |
= At= A+ Lt + AL+ AL + Alg+ Atg+ Aty + A tg+Atge Aty |
e B
T 264532

I'ig. 8. The fundamental principles involved in measurement of the probability
density of instantaneous values.

inside some predetermined limits, see Fig. 8. By moving the “window” shown
in Fig. 8 relative to the signal (by means of a D.C.-bias) the probability
density curve could be measured.

To adjust the excitation level of the non-linear system for comparison with
the theoretical results the curves given in Fig. 9 were used. Actually the
experimental curve shown in Fig. 9 is the magnetising curve for the iron core
in the non-linear system and the experimental set-up used to obtain this
curve is also sketched. Instead of determining the magnetic flux, @, in the
core, the output from an integration circuit (B & K Type 1606) was measured
directly, as @ = — ¢ { Edt. This output was then used as reference during all
later experiments. It can be seen from the figure that an excitation correspond-
Ing to an r.m.s. value (measured at the output of Type 1606) of 15 mV (LEs)
corresponds to y = 5; 21 mV (Es) corresponds to y = 2 and 27 mV (Es) corre-
sponds to y = 1/2.

Fig. 10 compares experimental probability density data to the theoretical
curves for the “same” y-values. The experimental results are averages from
3 measurements and indicate clearly the similarity between the electrical
model and the “tangent elasticity” model.

10
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264539
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Fig. 9. “Calibration” curve for the hardening spring analogue model.

Rel. Displacement
(Hardening " Spring System)

Measured Data:

O =Results for v =1f2
A =Results for 7y =7
O =Results for 74 =5

—-—-—z=(Calculated from tangent
elasticity model.

r y
30; 207 o 0 - Op 20, 30, 24453f

Fig. 10. Comparison between theoretical probability density curves shown in
Fig. 6 and experimental data for y = 1/2, y = 2 and y = 5.
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According to theory the probabilily density curve of the instantaneous relative
velocity should be Gaussian (Appendix Aj, independent of the non-linearity 1n
the stiffness-term of equation (2). To check this also the probability density
of the relative velocity was measured for all three levels of excitation. The
results are given in I'ig. 11 and compare very well to the Gaussian (normal)
curve. Deviations from a true normal distribution are mainly due to the
fact that the damping-term for the electrical model used here is not strictly

linear. dy
p(gt)
g:-é -
Or
Rel. Velocity Measured Data:
( Hardening Spring System) AN o 1y =1/5

ﬁgf =2

DAa=5
0.3 _ — = Gauss {(Normal)
Or

O
02 |
Or
- 0
_0_'1_-. [
O
O
o d
" i ()
— J | ; I | T
..-30'[- ' "'20,[' —ﬂ"r D U"r 20-[_ 30..'- 264530

Fig. 11. Probability density data for the instantaneous relative velocity.

So far only the probability densily of the instantancous relalive displacement
(and velocity} have been determined. With respect to potential damage
(malfunction) of the spring element the “average” vibration frequency and the
distribution of relative displacement peaks are the two most important {faclors.
To determine these quantities it may be well to recall the fact that the motion
of a single degree-of-freedom system excited by wide band noise will, for
systems wilh reasonably high Q-values, take place with approximately the
natural frequency of the system.

In the case of systems with non-linear stiffness the natural frequency depends
upon the level of excitation and will thus not be “constant” when the system
is excited by a statistical signal. It 1s, however, a simple matter from measure-
ments to determine the “average” {requency, either by counting the number
of zero-crossings (and dividing by 2}, or to estimale the geometrical center-
frequency from frequency analysis data of the actual response. Also, if the
non-linear stiffness characteristic 1s known 1t i1s possible, at least roughly, to
estimate the “average” frequency from f.inst. a “tangent clasticily” model.
I'ig. 12 shows a curve of the “average’” {frequency vs. v obtained by calculating
the number of zero crossings per unit time with positive slope, (see also



= | =

- "Average' Resonance Frequency.

" (Hardening Spring System)

f = Linear Resonance Frequency

= Calculated &
oy = Y2 {measured) f_ 2_ x [~{Z +1)
ap = 2 (measured) f. Y7 /"(%J-)
5 ] = 5 {meagsured)

i . J J T ! ] P g’

0 1 2 3 L 5 5 7 8 9 10 Lysss0

Fig. 12. “Average” resonance frequency for the tangent elasticity model, and
some results of measurements on the electrical analogue system.

Appendix B). For comparison purposes some results from measurements on
the electrical analogue are also shown.

The peak distributions for various levels of excitation can be measured by
means of an arrangement similar to that shown in Fig. 7. This arrangement is
described in the B & K Technical Review no. 3-1963 and the principle of
operation 1s briefly:

When a signal voltage with a positive slope passes through the lower “end”
of the “window”, Fig. 13, the counter is “made ready” to count. If the
voltage then drops below the “window” a count is registered. On the other
hand, if the voltage increases and passes through the upper “end” of the

32

“window” the counter is blocked until the voltage again has dropped to a
value below the lower “end” of the window. In this way a count is only
registered 1f a voltage peak occurs within the limits of the “window”.

FFor systems with relatively high Q-values Powell has suggested a somewhat

¢ Noise Signal
Counter
~activated Counter U
\ activated pper end

AN L

' Counter '
blocked

Count registered Count registered

« Lower end

Fig. 13. Sketch illustrating the principles itnvolved in measurement of the

probability density of positive peak values (signal maxima). By moving

the “window” relative to the signal amplitudes the distribution of signal
maxima can be obtained.

13



simpler procedure for the measurement of peak distributions in that, since
the signal (modulated carrier) goes through zero between each peak, it 1s
only necessary to count the number of crossings with positive slope at various
(closely spaced) signal levels. Subtracting the number obtained in this way
for one level from the number obtlained for the level just below immediately
gives the number of peaks occuring in the interval between the two levels.
Furthermore, it is possible to calculate the peak distribution from the mathe-
matical “tangent elasticity” model by using a similar reasoning together with
the fact that the distribution of the instantaneous relative displacements and
relative velocities are statistically independent (Appendix B). Crandall has
given a general formula for this casc (valid for systems with reasonably high
Q-values):

y
Pr (y) = aF(y) exp (—a § F(y) dy) (1)
O

Relative Displacement

Hardening_Spring_System

Fyly)= -’Jéi-tan(%y)'[cﬂs (%y}]q

Rayleigh

' Y
g, Loy
:i;{:’ {;‘;‘?E

I'ig. 14. Theoretical peak probability density for the “tangent clasticity”
mathematical model.

In the case of the “tangent elaslicity” model the solution to this equation is:

—_—

Jp 1Y : tan|{ — - y COS _.---_:!_-y : 5
Py ( ) 2 d ( 2 d ) 2 d ) , ( )

The function pp (y) 1s plotted for various values of » in IFig. 14, and I'ig. 15

——
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shows a comparison between the theoretical curves and measurements made
on the electrical analogue circuit. To measure the peak distribution the
arrangement described above was used, and the curves reveal some interesting
facts: _

Firstly, 1t can be seen, that in contrast to the theoretically derived curves the
ones measured show that some peaks occur also on the negative “side’” of the

| A ply)
Hardening_Spring_ System o
(Relative Displacement Peaks} ]"]
Calculated from "tangent %‘ o
elasticity ” model I
Measured on electrical ano- 117
logue model ar
— —— — Royleigh distribution 10-
o .
* =2
Ay = 2 0.9-
¥ 09
ay = 5
0.8
or I !
Y=l LY
07- i i
Or :
06-
Jr
0.5-
op| 4=0
0.4
Or
0.3

0.2-
Or d
010 /@
U'r '
-‘.//‘ t ‘\ ""'-_- Y
—or -050r O  050r o 1507 20 250 30r  350p

Cb4528

Fig. 15. Comparison between theoretical peak probability density curves and
experimental data.

signal. This is readily understood considering that the Q-value of the electrical
analogue circuit was relatively low (some 4—6), see also B & K Technical
Review no. 3-1963, p. 21.

Secondly, the measured curves deviate to some extent from those calculated for
the “tangent elasticity” model, although the trend in distribution 1s quite clear,
Fig. 15. This is 1o be expected from the difference in non-linear characleristic
between the actual circuit and the “tangent elasticity” curve, which was shown
in IFig. 9, p. 11. On the other hand the trend 1n distribution 1s so clear that
the analogue circuit used should be quite valuable for further experimental
studies of the various effects produced by a hardening spring {ype non-
linearity. It is f. inst. possible to study how the distribution of peaks changes

15



Fig. 16. Samples of the relative displacement signal. The trend towards a
triangular shape is clearly noticeable.

with input spectrum, excitation level, changes in the various response spectra
and wave shapes, etc. Some of these effects will be discussed here while
others have to be left for possible later investigations.

The author wishes at this stage to point out that in one of the references
cited at the end of this article, there seems to be a misunderstanding with
regard to the waveshape of the higher peaks of the relative displacements 1n
a hardening spring system. In the mentioned reference the waveshape 1s
calculated and found to tend from sinewave towards a more “rectangular”
shape. This 1s not the case. The waveshape of the higher peaks tends towards
a triangular form which is clearly seen from the photograph shown in Fig. 16.
Also, by using the Jacobian elliptic functions to treat this kind of non-
linearity, it can be verified that the “rectangular” trend is not correct.®)
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Fig. 17. Frequency analysis of the relative displacement signal recorded on
spectrum level basis.

+#) Further evidence for the triangular “limit’”’ shape is obtained by studying the probabili-
{y densily curves shown in Figs. 6 and 14. The “limit’” distribution of instantaneous
values is rectangular (IFig. 6) while the “limit” peak distribution is a o-function (Fig.
15). These are characteristic distribution properties of triangular waves with fixed
maximum amplitude.
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The photo, Fig. 16, was taken off the screen of an oscilloscope with an
excitation corresponding to y = 1/2.

In Fig. 17 the change in spectrum with excitation level is shown. It should
be noted that no great amount of harmonics seem to be present which 1s in
accordance with the trend towards a triangular signal waveshape. The
hardening spring type non-linearity reveals itself in that the “resonance”
moves towards higher frequencies as the level of excitation is increased, and
that the “effective” Q-value of the system decreases.

Hardening Spring_ System
j ply) Relative Displacement (7=1/2)

1.5
O, |
ﬁ L]
-—const. accel. input
1.
O
f,_r:nnstq velocity input
05 l
°r |  ~const. displ. input
/
e — I
Y
| = T ] ! l ; ™
O 0 Or 207 3o Loy

264525

FFig. 18. Change in peak probability density with input spectrum slope. T he
curves are valid for low Q-values of the resonant system and with the input
spectrum cut-off at approximately 10 times the resonance frequency.

Some experiments were made to try and establish the change in peak distribu-
tion as the shape of the input spectrum was varied. The results can be seen
from Fig. 18. Here the peak distributions of the relative displacement
(y = 1/2) are shown for three different input conditions: constant input
acceleration level, constant input velocity level, and constant input displace-
ment level.

The change in peak distribution is due to the superposition of high frequency
“peaks and notches” which increases as the input spectrum slope changes
from — 6 dB/octave (const. acceleration input) through 0 (constant velocity
input) to + 6 dB/octave (constant displacement input), see also B & K Technical
Review no. 3-1963. The change in spectrum of the relative displacement,
corresponding to the above mentioned change in waveshape and peak di-
stribution can be seen in Iig. 19. In all the measurements reported here it
was found convenient to introduce a low-pass filter with a sharp cut-off

at some 5 kec/s in the forcing signal, whereby the extreme high frequency
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I'ig. 19. Changes in the relative displacement spectrum with excitation level
and input spectrum slope (forcing function):
a) Constant acceleration input.
b) Constant velocity input.
c) Constant displacement input.

“peaks and notches” were removed. If this filter had not been introduced
and the upper frequency limit of the forcing signal, f. > OO, the energy
contained in the non-linear resonance for the case of constant displacement
input would have been neghgible compared to that contained in the high
frequency region. The peak distribution curve for the relative displacements
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would then be the distribution obtained for a “flat”, linear power spectrum,
despite the non-linear resonance.

On the other hand, if the forcing spectrumn falls off abruptly just above the
resonance and/or the resonant system shows a very high Q-value only small
changes in the peak distribution follow from changes in the forcing spectrum
slope.

A fairly good insight into the behaviour of the relative displacement of a
hardening spring system as a function of excitation level and forcing vibration
spectrum has now been obtained. The next important characteristic to be
studied 1s the “absolute”*) acceleration of the mass (the differentiated voltage

a)
'(EE)
} Plat ‘Hardening_ Spring_System
(Absolute Accelemation)
o%. = Y2
A= Z
O =3 ‘
----= Rayleigh
x b)

%

2)

1L
/
”
/!
4
O

: . . -\u—_—_- - : (d

i

- 20r - O 0 Or 207 307 Lop 50T bar cssszs

Fig. 20. Samples of the wave-shape and peak probability density curves for
the acceleration signal.

a) Sample of the acceleration wave-shape.

b) Peak probability density obtained with a flat acceleration input spectrum.

across the capacitor, I'ig. 2). Here, to the authors knowledge, no theoretical
results have been published, and to formulate and solve the differential
cquations necessary for an exact statistical treatment of the problem seems

¥) In systems with high Q-values the “absolute” and the relative motion of the mass are
practically identical.
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practically impossible.*) However, useful conclusions may again be drawn from
studies of the electrical analogue model. By looking at the signal on the
screen of an oscilloscope the “peaking” effect described in the B & K Technical
Review no. 4-1963 is clearly observed, see Fig. 20a.

Also it can be seen that very high peaks occur relatively frequently, i.e. the
probability density of high acceleration peaks is emphasized as compared to
linear cases. This is readily verified by measurements and the corresponding
curves are shown in IFig. 20b.

[t should be noted that the curve marked y = 1/2 shows a “considerable”
probability density of the occurrence of peaks as high as 6 or. Actually, further
investigations have shown that the curve 1s measurable up to 16 o, with the
resolution available from the measuring equipment used. On the other hand
the energy contained in these high peaks i1s very small, which can be seen
from the frequency spectra, Fig. 21.
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Fig. 21. Frequency spectra for the acceleration of the mass recorded on
spectrum level basis. (Input acceleration spectrum flat).

I[f a great amount of energy had been present in the peaks the frequency
spectra would have tended towards a “flat” energy spectrum above resonance.
As can be seen this is not the case but a pronounced third harmonic response
exists. (To show the harmonic response the forcing spectrum was cut off
sharply at 1400 c¢/s by means of a filter).

Furthermore, in most non-linear mechanical systems of practical life a
relatively high Q-value and not too great non-linear stiffness seems to
“eliminate” the high peaks so that waves very similar to triangles of different
heights are obtained. The spectra and peak probability density curves do
therefore in practice not differ foo much from those measured in the linear
case.

The Softening Spring System.

FForce vs. deflection curves for a softening spring were shown in Figs. 3 and 5.
For a theoretical treatment the characteristic shown 1 Fig. 5 is very well

¥) During the printing of this article a method to theoretically determine the distribution
of absolute acceleration peaks has been found at B & K. This will be described in work
{o be published later.
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suited and will reveal most of the effects to be expected from a system with
this kind of elastic element. In practice softening springs occur, f. inst. when
a material is stretched beyond the proportional limit.

Because of the intrinsic structure of most engineering materials not only the
elastic property of the materials is non-linear, but also the damping etfect
will commonly show non-linearities (L.azan, Crandall, Khabbaz a. o.).

It may therefore be difficult to separate the two non-linear effects which
makes the analysis of practical problems quite complicated. On the other
hand by theoretically studying the phenomena separately, knowledge can be
gained which might help to obtain an approximate solution. As mentioned
above the “hyperbolic tangent” characteristic is very well suited for a
theoretical treatment and can be used directly in the solution to the Fokker-

ply)

Softening_Spring_System

ply) =F_.%%ﬁf - [E-'.liﬁ"}]r

<[5

~boy 3o, ' -0, | 1, 0 a 20, 3c,

Softening_Spring System

~
p iyl pp{y}-f- tunh[x}[&.r;mﬁ]

T 1 - X

T J
G T Zr:rr :'In‘r I.crr 5n’r R

Fig. 22. Theoretical probability density curves for the softening spring systein.
a) T he instantaneous relative displacement.
b) Relative displacement peaks.
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Planck equation, see Appendix A. The expression obtained for the probab_i__li"_iy
density curve of the instantaneous values of the relative displacement is then:
IW ’ - / |
-1 [ ( 7 ) cosh (y) |

This expression is plotted for various values of ' in Fig. 22a, and the
relationship between y’, 6 and the non-linear characteristic is illustrated in Fig.
5. For comparison purposes also the normal (Gaussian) probability density
curve 1s shown. It 1s interesting to note that between some 0.5 or and
2 or the probability density of the relative displacement 1s smaller in the non-
linear than in the linear case, while above 2 o the probability density of the
non-linear response rapidly becomes several times greater than that of the
corresponding linear response. A similar effect is observed for the probability
density of relative displacement peaks, Fig. 22b). The formula governing
the peak distribution (for high Q-values) is:

' 1
pr (y) = " tanh (y) | 4 (7)
- cosh (y)

and here the “cross-over-point” 1s some 3 ,, while at low g, levels no pro-

nounced “cross-over-point” exists.
ImA

8

Softening _Spring_System

16 -

Measured

— —"Hyperbolic tangent"
Characteristic

A

12+

| ] ] 1 1 I I T T L) T 1 h ES v‘
1 2 3 yA .5 B 7 8 k] 1.0 1.1 P57

FFig. 23. “Calibration” curve for the softening spring analogue model.

A possible electrical-mechanical analogue model for a softening spring system
was described in the B & K Technical Review no. 4-1963. However, this model
1s not very well suited for use with random excitation as, at higher o:-levels,
the model becomes of the hardening spring type. To find a simple, more
suitable electrical model for the softening spring case seems to be fairly
difficult, but from results obtained wilh the one available some useful con-
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I[ig. 24. Frequency spectra for the relative displacement signal recorded on
spectrum level basis. (Input acceleration spectrum flat).

clusions can be drawn. The operating characteristic for the model is shown
in FFig. 23 and compared to the mathematical “hyperbolic tangent” curve. The
excitation levels used in the experiments are marked on the figure.

I'rom oscillographic studies of the waveshape (with sinuoidal vibration of
the base) it was found that the relative displacement tended towards a rounded

shape, 1.e. the “opposite” trend of the waveshape In the hardening spring case.

This was also expected from a study of the Jacobian elliptic functions for

similar systems.

Also, considering the almost sinusoidal waveshape of the relative displacement

signal the frequency spectrum will contain only a very small amount of

harmonics even at high non-linear levels of excitation, Ifig. 24.

Regarding the change in peak distribution and response spectrum of the

relative displacement with wvariations in input spectrum slope and system
Q-value a reasoning similar to that used in the hardening spring case will
readily indicate the trends and should not be repeated here. On the other
hand the change in “average’ resonance frequency with excitation level might

Fig. 25.

‘i "Average” Resonance Frequency
fo : :
(Softening Spring System)
1
_ alve
) : o 1 2
I fo = Linear Resonunce Frequency o gz 2? [-/"(-%—)]
05 — -z Calculated
] ]
0= 1 (megsured)
) a2/ ,= 2{measured)
. oy = 5{measured)
j
T . J | I 1 1 ] T ¥ I = 9,-
0 1 Z 3 b 2 6 7 8 9 0 pusss

“Average” resonance frequency for the hyperbolic tangent mathe-
matical model and results from measurements on the electrical analogue system.

See also Figs. 24 and 26¢.
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need a few comments. In a softening spring system the resonance frequency
decreases with increased excitation, see IFig. 24. The change In frequency
can also be calculated on the basis of the “hyperbolic tangent” mathematical
model and is shown in IYig. 25, together with results obtained from measure-
ments on the electrical analogue. For comparison of the mathematical model
with the characteristic of the electrical analogue, see Fig. 23.

T'he change in resonance frequency with level of excitation is a very typical
property of systems containing non-linear stiffness elements and may in some
cases be used for detection of this type of non-linearity.

Finally, some studies were made of the acceleration of the mass (differentiated
voltage across the capacitor). Fig. 26a and b show pictures of the waveshape
of the acceleration signal and the trend towards a square wave is clearly seen.
This is in agreement with the results obtained for sinusoidal excitation (B & K
Technical Review no. 4-1963) and shows that the amount of harmonics
contained in the acceleration signal is smaller than in the case of the hardening
spring, see also the frequency spectra recorded in IYig. 26c. A further con-
clusion which can be drawn from a study of the acceleration waveshape is
that the probability density curve of the peak values will tend from a Rayleigh
distribution at low levels of excitation towards a single peak (J-function)
at or, when the excitation is increased greatly (= OQ}. Also the probability
density function of the instantaneous amplitude values will change from
Gaussian to the distribution characteristic for squarewave signals, l.e. peaks
(_(23 -functions)at -+ or.

To experimentally verify this trend the peak distributions for various levels
of excitation (y' =1, ¥y =2, " = 5) were measured and the results can be
seen 1 Fig. 26d.

[t 1s Interesting to note the similarity and differences in the distribution of the
acceleration signal in the hardening spring case and the relative displacement
signal in the softening spring case and vice versa. That some similarities exist
1s to be expected from the force (acceleration) vs. relative displacement
characteristics of the two types of system. On the other hand studies of the
signal waveshapes reveal great differences in many respects (not only in
frequency-variation with excitation level}) and, as shown in the experiments
reported here, the amplitude distributions as well as the frequency spectra
clearly indicate these differences.

Systems with Non-linear Damping.

All vibrating systems of practical life contain some damping (except systems
operating at, or very close to 0° Kelvin).

The damping accounts for the energy dissipating during vibration i.e. that
part of the vibrational energy which is being transformed into heat. In
mechanical systems the damping can be either material damping or system
damping. Material damping is an internal property of the materials from which
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the various parts in a vibrating system are made, while system damping is
caused by the interaction of the parts with each other and with the environ-
ment. The damping properties of a vibrating system are commonly cha-
racterized by the energy dissipated by the system per vibration cycle, and
consist of a mixture of material and system damping. Normally the damping
enerqgy dissipated in the system 1s assumed to be proportional to the square
of the motion, and the damping force will thus be directly proportional to the
relative velocity. In many practical cases, however, this assumption 1s not
strictly correct even thoiigh it can be considered a fairly good approximation.
[.azan a.o. have shown that f.inst. in the case of structural material damping
the energy dissipation, when considered over a wider range of stress am-
plitudes, can be better approximated by an equation of the form:

g ) 23 S\ 8
D :( . ) + 6 () in.-lb/in.3/cycle  (8)

SB ", SB
Wiiei e
DD = Specific damping (cnergy)
Se = Stress at endurance limit
S = Stress amplitude for 1he cycle of vibration

By assuming that cach vibration cycle deviates only slightly from a sinusoid
(but may have varying maximum amplitude) and that linear elastic stress/strain
relationships hold true, Khabbaz writes the damping force for structural
material as:

- dy dy ) 1
=By () 9
A more general form of this equation (also suggested by Khabbaz) is
'h. dy ( dy) m 10

which can be used to account for most types of positive, non-linear damping
‘material as well as system damping) met in practice®).

Now, equation {10) has the same form as a combination of linear and non-
linear vollage dependent resistors (V.D.R’s) in the mobility type electrical
mechanical analogy and a fairly good electrical model representing non-
linear damping is thus obtained from the circuit sketched in Fig. 27a. Fig 27b
shows the non-linear characteristic of the V.D.R’s used in the experimenls

with an indication of the r.m.s. response levels considered.

The assumption made above that each vibration cycle of the motion dev1ates
only slightly from a sinusoid is well substantiated from practical as well as
theoretical investigations on periodic motion of systems with non-linear
damping and not too low Q-values. This is also easy to understand physically

#) Other types of damping may well be found, f.inst. cases which show negative damping
and thus initiate self-sustained oscillations. This paper does, however, only consider
systems with positive damping.
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Fig. 97.
a) Electrical model used for the experiments with non-linear damping.
b) Current (force) vs. voltage (velocity) of the V.D.R. (non-linear damping).

in that the damping force in systems with relatively high Q-values will be
small compared to the elastic forces and will thus not disturb the wave-shape
of the motion to any great extent.

A question arising immediately from the above reasoning is: If the wave-
shape is not very much influenced by non-linear damping will then also the
distribution of maximum amplhitudes (peaks) remain close to that for linear
cases (Rayleigh-distribution) when the system is subjected to random vibration.
To answer this question a number of experiments have been carried out In
which the instantaneous value distributions as well as the peak distributions
of the relative displacement, velocity and acceleration were measured for
various levels of excitation.

The results of these measurements indicated that the deviations from the
linear case were small, being greatest for the relative velocity which also was
to be exptected. On the other hand the most important quantities with respect
to malfunction are the relative displacement and the acceleration of the mass
and these quantities seemed to be well approximated by linear theory. In
Fig. 28a the peak distributions for the relative displacement are shown and
compared to the Rayleigh distribution. It is seen that only minor deviations
are present which also are in line with theoretical results obtained by Khabbaz.
I'ig. 28b and ¢ show samples of the waveshape of the damping force (current
through the V.D.R.) for the highest level of excitation used in the experiments
and the effect of the non-linearity is here clearly seen. The waveshape of the
damping force corresponds to that necessary to produce practically sinusoidal
motion cycles of the mass.

27



When the Q-value of the system becomes very small, i.e. when the damping
force becomes comparable to the spring force the waveshape of the motion
becomes distorted and the peak distributions deviate from the Rayleigh
distribution. However, also in this case it seems possible to use linear theory
without any appreciable error for the peak distribution of the relative dis-
placements, see IFig. 29a. The distribution of the relative velocity peaks, on
the other hand, is influenced to quite an extent, the probabilily of occurrence
of high velocity peaks being practically zero, Fig. 29b.*) Also the acceleration

4 ply) Nonlinear Damping._
(High Q,Rel.Displ. Pegks)
88 _
] —
HUEV:5V
Cfr L UEV =15V
X Opy = 5V without VDR,

20 3 Or

C.

Fig. 28. Results of measurements on a “high”-() system with non-linear
damping.
a) Peak distributions of the relative displacement.
b) Samples of the waveshape of the damping force.
c) Same as b) but with extended time scale.

#) It 1s possible to formulate and solve a Fokker-Planck equation for the completely
degenerate system (spring element inoperative) and thus obtain theoretical instantaneous
value distributions for the relative velocity and acceleration. These will be similar to
the curves obtained for the relative displacement and the relative velocity in the
hardening spring case. IHowever, it was not possible for the author to obtain analytical
expressions for the peak distributions but the resulls obtained seem to verify the trend
of the curves shown in Fig. 29b.
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Fig. 29. Results of measurements on a “low’”-Q system with non-linear damping.
a) Peak distributions of the relative displacement.
b) Peak distributions of the relative velocity.
c) Peak distributions of the “absolute” acceleration of the mass.
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signal is influenced in that it shows an increase in the amount of high
a.celeration peaks, Fig. 29c. This is readily noticed by looking at the signal
on the screen of an oscilloscope.

Finally, Fig. 30 shows the acceleration vs. frequency spectra measured for
various levels of excitation both in the “high” and low Q cases.
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Fig. 30. Frequency spectra for the acceleration of the mass recorded on

spectrum level basis. (Input acceleration spectrum flat).
a) T"he “high”-Q case.
b) The “low”-() case.

Conclusion.

An 1nvestigation of the response statistics of non-linear single degree-of-
freedom systems to wide band random excitation has been made by means
of electrical-mechanical analogue models. Various “limit” cases have been
discussed and “limit” distributions determined.

It has been found that in the case of practical systems with non-linear damping
the peak distribution of the relative displacement may well be approximated by
means of linear theory, even In cases where the non-linear damping force is of



the same order of magnitude as the elastic force. In systems where the non-
linearity 1s situated 1 the spring element, on the other hand, the peak
distribution of the relative displacement deviates considerably from that
predicted by linear theory. Also the distribution of acceleration peaks has
been determined and found to differ (in some cases considerably) from linear
estimates. However, the energy contained in the high acceleration peaks of
a hardening spring system is relatively small, which can be seen from the
acceleration spectra. Some preliminary experiments with aluminium and steel
plates loaded by a mass in the center (not reported here) also seem to indicate
that the deviations between linear and non-linear predictions may be less
pronounced in practical structural problems than reported in this paper.

This work is part ol a program laid down to evaluate and extend the new
vibration test technique, sweep random vibration, which was introduced in

the B & K Technical Review no. 2-1964.

Appendix A

Some Notes on the Fokker-Planck Equation.

The so-called Fokker-Planck equation is a parabolic partial differential
equation governing diffusion processes in physics and chemistry. It was
originally developed by A. D. IFokker in 1914 and generalized by M. Planck
in 1917. It is derived on a probabilistic basis (Einstein, Smoluchowski) and
can be formulated to govern random processes in ordinary spring-mass systems.
As has been shown by several investigators (Chuang and Kazda, Caughey
Ariaratnam, Crandall a.o.) a solution to this equation can also be obtained
for some non-linear cases.

Clear-cut solutions have been formulated for stationary cases where the non-
linearity (in a single degree-of-freedom system) is situated in the spring element
and the excitation 1s of the “white” Gaussian type. However, an exact solution
to cases where the non-linearity is situated in the damping element has to
the author’s knowledge not yet been found. Also 1t is doubtful whether,
practically useful general solutions for multidegrees-of-freedom non-linear
systems can ever be formulated as the information necessary to exactly
describe such processes mathematically is quite considerable. (Some particular
multi-degree-of-freedom systems have been {treated by Ariaratnam and
Caughey).

The Ifokker-Planck equation to be applied to a single degree of freedom
vibrational system 1is:

dp S (Ayp) QI (Avp)

Ay ch LBFE_ P) | 22 (Byv p)
Jy

! 1 82 (BW P)
oy2 " Qydv ' 2 Jv?

|
|

1
; (A1)
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~ lim
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~ Iim
Av = o
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At

Second Transition Moment of y and v

dt !(p — P (y,V))

By calculating the A’s and B’s for the system governed by cquation (2),

inserting the expressions in (A-1) and solving the resulting equation the
following expression is obtained for the probability density p (y, v):

p(y,v) = Cexp

—

Ve

—_— a - -

2

s

y
exp [—ag F (y) dy]

(A-2)

which is the general solution to the Fokker-Planck equation for this specific

lype of non-linear systems. Here a is a quantity determined by the magnitude

of the cxcitation and the degree of viscous damping in the system.

The non-linear stiffness function IF{y) may have any form, and the two

functions {reated in this paper have been chosen because they represent

“limit” cases, see IFigs. 4 and 5.

Because the distribution of the instantaneous velocity is Gaussian and 1n-

dependent of the distribution of the displacement it is found convement to

write the “general” solution to the Fokker-Planck equation in the form:

y
p (y) = C exp [—aéF(y) dy|

(A-3)

where (' here will be the normalizing constant*). Using the “tangent cha-

racteristic’” for the hardening spring system, then:

COS (

y
§ F(y)

wherec:

and:

where:

y T
dy = {)atan (Qd
5 — a Qd_
T
p (y) = C exp
Yy = 0 )
+ oc

y ) dy = —a

I n

-

| .

#) Normalization: j p(y) dy = 1.
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Now using the normalization conditions G’ is found to be

C' = —

sar(2EL

Here /' is the Gamma-function

Thus: - |
Va ( ;} + 1) i -
p(y) = v 1 cos( 2ﬂd y ) 4 Hardening Spring System.
2d [ : :
e

Similarly, using the “hyperbolic tangent characteristic” for the softening spring
system one obtains:

Yy y
{ F (y)dy = §{ btanh (y) = b In [cosh (y)]
0

and:

y) : S Softening Spring System.
y)-z  cosh (y)

p(y) = -
2*”'-1

where: y = ab

The value of g, (g-response) is found from the definition:

General solutions for this integral in the two above cases could not be found,
and use was made of integral tables and graphical (planimetric) integration.
When o: is found it is a simple matter to “convert” the density curves to

p (y) and in this form they can be readily compared with measurement data.
Or

Appendix B

Crossing Rate and Peak Statistics.

The method outlined below for finding the crossing rate statistics of random
signals 1s originally due to 5. O. Rice and provides the basis for a simple means
to find the probability density of the signal peaks (maxima) in some important
practical cases.

To determine the crossing rate theoretically it 1s necessary to know the joint
probability density p (y, v] where v = y for the process being studied,

dt

and the process should be continuous and stationary. Due to the stationarity
the number of times that the signal crosses a certain level, a, during the

period of time, t, will be proportional to t. If the number of crossings with

positive slope (i.e. when the signal crosses the level a from below to above)
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is na’ per unit time then the number of crossings with positive slope in the
small time interval At is N.™ = n.* At. Now, considering the level y (t) below
a the minimum slope that the signal must have at y (t) to also cross a during

the time interval At is v = AY- S (t), see also Fig. B 1.
At At
Thus, to cross the level, a, with a positive slope Z]?[T < v < T 0. By

integrating over all possible postive slopes that the signal might have in the
small time interval At and letting At > o the rate of crossing, n.*, at the level
a can be found:

X 9
N.t = na"™ At = 5 [Sp (y, v) dy| dv
Oy

Considering that At is very small the signal can be approximated by siraight
lines 1n this time interval, whereby:

y = a—v At
and
a a
fp(y;v)dy =§p(y,v)dy =P (a,v) —P (a— v 4t, v)
y a — v At
_ v Plav)—Pla—vdtv)
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.+ lim 1 \ P(a,v)] —Pla—vdtyv
Thus: na = At>o0 At v At v At dv
0
n.t = §{ vp (a, v) dv | (B-1)
0

This 1s Rice’s expression for the rate of crossing of the level a with positive
slope.

It the process being studied is such that y and v are independent of each
other then p (y, v) = p (y) p (v)] and the ratio of the rate of crossing with
positive slope at the level a and 1. inst. the zero level is simply:

_ pla)
p (0)
In narrow band noise processes the signal actually passes through zero with

positive slope once per maximum (peak), Fig. B 2. The expression given

s P

Iln+

above for

— 1s then actually a measure of the probability of oblaining
No

signal peaks higher than the level a.

263363

From the definition of probability and probability density ( p(y) = dP (y) )

dy
d na+ 1

it follows that: Pr(a) = — .
a No

-+

whereby the probability density of the peaks occuring in a narrow band noise
process 1 which y and v are independent of each other is:

dp (a)

da

p (0)

In the case of non-linear resonant systems with relatively high Q-values and
where the non-linearity 1s situated in the spring element the above require-
ments are fulfilled for Gaussian white noise excitation of the system, see

Appendix A. The probability density of the instantaneous values was found
to be:

Pr (2) = —

2 y
p(y,v) = Cexp[—a — Jexp[—alF(y) dyl
O
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By differentiating this expression with respect to y and using the relation
given above for pp (a) one obtains:

|

pr(a) = al' (a) exp [—a § T (y) dy] (B-2)

O

which is the expression given on p. 14.
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News trom the Factory

Sine-Random Generator Type 1024,

The Sine-Random Generator Type
1024 has been designed as a versa-
tile, multipurpose, signal source for
clectrical, electro-acoustical and
acoustical measurements.

The generator covers the frequency
range from 20 to 20000 Hz, and at
the output terminals or the attenu-
ator output socket the following
three lypes of output signals can be
obtained:

1. Sine Waves

2. Narrow Bands of Random Noise
3. Wide Band Random Noise

In the Narrow Bands of Random
Noise condition, the 3 dB band-

widths of the noise band can be

chosen in four steps, viz. 10, 30, 100 and 300 Hz, and the selected noisc¢ band
can be swept 1n the full frequency range 20—20o000 Hz, or in a preselected
part thereof.

When the generator is switched to Wide Band Random Noise it supplies a
signal with a constant power spectral densily and a trulyv Gaussian instantane-
ous voltage dastribution up to 4 o.

The rm.s. level of the output signal, noise or sine-wave, can be read on a
built-in ndicating mefer. Various time conslants can be selected for the signal
rectifier thus ensuring sufficient averaging time cven for the very narrow noise
band of 10 Hz.

The output level from the Sine-Random Genecrator can be automatically
regulated by means of a built-in regulation {(compressor) arrangement. Also
the input voltage to the compressor amplifier can be measured on the built-in
indicating meter.

The mstrument is also available as a B & K Combination Unit with a Level
Recorder Type 2305 for automatic response recording. The tvpe number of
this unit 1s Type 3309.

Modification of Level Recorder Type 2305.

Our laboratory has now succeded in bringing the low frequency cut-o/f of the
Level Recorder down to 2 Hz (c/s) without reducing any of the other good
properties of the Recorder.

T'his makes it possible for many people to use the Recorder where it was
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not applicable previously, maybe specifically in the field of level recording
of low frequency vibrations.

The time-consuming work of analysing great amounts of oscillographic
recordings or point by point measurements can now be substituted by direct
r.m.s. recording also 1n this frequency range. Furthermore, the dynamic
range of 1nterest can be preselected in the form of the interchangeable
Recorder Range Potentiometers.

NOTE: All Level Recorders with serial nos. higher than 116350 will be
supplied for the frequency range 2-—200o00 Hz (c/s). As the modifica-
tion has required a serious re-design of the amplifiers “older”
Recorders cannot be modified simply. '

For automatic frequency response recording a 7Type 3307 Combination Unil

consisting of the modified Level Recorder and a Beat Frequency Oscillator

Type 1017 (frequency range: 2—2000 Hz (c/s)) is available.

Finally, the new version of the Level Recorder is also included in the

I'ype 3328 Automatic Frequency Response Recorder. This unit contains a

B.F.O. Type 1017 and a B.F.O. Type 1013 + a Level Recorder and will now

allow completely automatic frequency response recording over the total range

from 2 Hz (c/s) to 200000 Hz (c/s).
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